
Cameron Laird's personal notes on PDF toolkits



An index to PDF toolkits

	Java
    	iText [explain how crucial it is]
    
	PJ
    



	Perl
    	PDF::API2
    



	PHP

	Python
    	pyPdf
    
	PyPDF2
    
	ReportLab
    



	Tcl





Details on individual toolkits


See remarks on PDF::API2 in
this
    book review of Perl Graphics Programming.


Etymon™'s
     PJ class library
    
     coded in Java includes a command-line utility, pjscript.
     Jens Vonderheide was also 
     enthusiastic about it.
     In early 2012, Etymon seems to be off-line.


PyPDF2
	is Phaseit's fork of pyPdf.
	Both pyPdf and PyPDF2 are open-source pure-Python
	libraries which concentrate on manipulation of existing
	PDF instances.


ReportLab

ReportLab
      is an ambitious, industrial-strength
       library largely focused on precise creation of
       PDF.  Understand clearly that it has an
       open-source,
       no-charge base, but also a for-fee 
       "ReportLab PLUS"
       extension of 
       that base.  ReportLab PLUS involves a relatively
       large cost and a relatively large extension of
       capabilities and services.




ReportLab programming

Along with the references above and in
   related pages,
    "Yes You Can" and
    "PDF for the server" (but see important import_HTML note
    below)
    touch on ReportLab programming.  Readers asked for example
    usages.  Here are a few:

copyPages



Is copyPages still not in the
    standard ReportLab documentation?
    In which public release did it first appear?
    As October 2002 begins, it looks as though
    it's only in the for-fee library, but that's not true
    ... [collect details, explain.]
    In any case, here's how you can append one PDF source
    to another, while preserving "bookmarks":
       
   from pageCatcher import copyPages
   from reportlab.pdfgen import canvas

   def makeAppendedResult(result, first_source, second_source):
      c = canvas.Canvas(result)
      copyPages(first_source, c);
      copyPages(first_source, c);
      c.showOutline()
      c.save()
       


import_HTML

Ugh.  My apologies, folks; in the
    article titled
    "PDF for the Server"
    I identified import_HTML as part of ReportLabs' library.
    This is simply false, and I'll make a point of correcting
    it in a future column.

The import_HTML I use is this:
    

# In response to a correspondent's comment, I replied:
#   "Bleah; ignore the Python.  I'll comment it to make this
#    clear:  the point is just that HTML->PDF is achieved as
#    HTML->PS->PDF, the second step is canonical, and the
#    first is done with a specific command-line tool."

# Copyright Kyler Laird 2001.
# Freely redistributable.
#

# Import from HTML.
def import_HTML(self, html, color=0, style=None, landscape=0, number=0):
    infile = self._write_string_to_tmpfile(html, ext='HTML')
    self.outfile = self._mktemp('ps')

    options = []

    if number:
        options.append('--number')
        options.append('--startno %d' % number)

    if landscape:
        options.append('--landscape')

    if color:
        options.append('--colour')

    if style:
        stylefile = self._write_string_to_tmpfile(style,
ext='style')
        # options.append('--style "%s"' % (style))
        options.append('-f "%s"' % (stylefile))

    command_string = "html2ps %s -o %s %s" %
(string.join(options, ' '), self.outfile, infile)
    self._run(command_string)
    return
    


There are several
    ways to render HTML as PS.
    


More on PDF


I also (episodically) maintain pages on 
    PDF in general,
    PDF "converters",
    PDF generation,
    ...


In December 2001, I published a breezy
    introduction
    to no-cost PDF resources for my
    "Open Sources" column.
    I also wrote
    "Yes You Can" (August 2002),
    "Low-cost PDF"
    (April 2003),
    "PDF for C and C++ Developers" (October 2003),
    and ...
    For more information on the products described there, start
    with the home pages of
    PDFlib,
    PJ, and
    ReportLab.
    I'll probably write more on ReportLab programming and business
    strategy throughout 2002, perhaps beginning with a piece on
    PDF security; write
    me if there's a particular aspect you want me to cover.
    Note that the Ohio Department of Transportation's open-source
    JavaPDF
    is another product worth considering along with PDFlib, PJ,
    ReportLab, and all of CPAN's
    PDF
    directory.


I recommend reading
    "Kyler
    Laird's PDF utilities" both for the usefulness of the
	
    tools and hyperlinks available there, and also for the
    correct engineering commentary.
    Dave Toureztky
    maintains a
    "Gallery
    of Adobe Remedies"
    with more comprehensive information on PDF security, including
    a pointer to a
    Perl
    script which decrypts PDF.











Cameron
Laird's personal notes on PDF
toolkits/claird@phaseit.net


