
Cameron Laird's personal notes on generation of PDF

Categorize PDF producers in this way:

	"language bindings", that is, language-specific programming
 libraries that create and act on PDF instances; and

	"converters" that transform from a "display format" to PDF.

[Explain Vasudev's xtopdf and StdinToPDF.py.]

Language bindings

[Explain iText, ReportLab, jsPDF
				 (also available here)
				(now HTML5-equipped?), ...]

[Refer to Vasudevram's
 CreatingPDF Wiki,
 the severely-incomplete
 Wikipedia reference page ...]

Converters

How can one generate PDF which meets certain requirements?
 One strategy is to create something which meets the (visual)
 requirements, then transform it to PDF. This has been quite
 effective in our commercial practice. We've automated hundreds
 of thousands of PDFs, for instance, by first creating a corresponding
 HTML source (roughly), then transforming that source to PDF.
 We've also had occasion to employ such other display formats
 as TeX, PostScript,
 Sphinx, DOC, ...

[Point to published articles and commercial services
 related to this subject. Explain how this approach
 can fit a particular organization's licensing and
 skills MUCH better than "native" PDF.] [Write about TeX and DOC.]

DOC

For the mass of computer users, the "natural" way to produce a
 PDF instance is probably something like this:

	Edit a document in Microsoft Word; then

	Somehow render the document to PDF.

 Consider the possibilities automation introduces: with a way
 to generate DOC->PDF, existing
 organizational corpora suddenly become available as PDF,
 with all the usual advantages [further document]
 (licensing, read-only, device-independence,
 ...) of the latter. With a means to generate DOC automatically
 (as Phaseit also does, though far less often than other formats
 here), we have a chain that produces desirable-looking PDF, by
 means with which there is wide familiarity. Maintenance is
 correspondingly inexpensive.

For the
 DOC->PDF step, there are many
 possibilities, including:

	...

 HTML

For years, I used
Jan Kärrman's
 Perl-coded
html2ps utility
 in a chain with Ghostscript (for ps2pdf)
 in production situations. However, as of March 2004, I began
 to rely on
 GPLed
 HTMLDOC,

 advertised as
 "a program that generates indexed HTML,
 PostScript,
 and PDF files from HTML 'source' ..." HTMLDOC has produced usable
 output from everything I've given it. Ghostscript, on the other hand,
 fails on certain output of html2ps. While I'm good enough with
 PostScript,
 Perl, and C to tackle the errors I've encountered so far, I currently
 find it more productive to rely on HTMLDOC. If someone from the
 html2ps or Ghostscript (or PStill, for that matter) projects wants
 reproducible symptoms and/or patches, I'll happily oblige.

Yes, HTMLDOC is both commercial and
 free.
 Note, by the way, that 1.9 of HTMLDOC will be the first
 release to support CSS. [Explain technical advantages and
 disadvantage of HTMLDOC.]

In 2007, I began to use iText
 also for
 PDF transformations. HTMLWorker is the
 natural interface. Early in 2011, the HTMLWorker
 team released a new implementation. Even this latest
 HTMLWorker, though, does not support
 <form> or several other standard HTML
 elements.

In 2010, I received a recommendation for
 wkhtmltopdf.
 For applications that involve
 CSS and/or put a premium on
 duplication on what end-users see in a Web browser,
 wkhtmltopdf is now our strongly-preferred solution.

All other HTML->PS or HTML->PDF products apparently don't automate well
 and/or are available only for Windows.

While I still have no experience with Win*-based
 activePDF
 WebGrabber, its function apparently is exactly to convert
 HTML to PDF.

PostScript

I've written several PostScript applications. With those
 in hand, of course, it's natural to render output as PDF.

Most of the world counts on ps2pdf.
 The only independent converter I've found so far is
 PStill.

TeX

 Sphinx

On MacOS, Sphinx uses MacTex to render PDF--all
 1.5 GB of MacTex. This clearly carries a lot of
 unnecessary bits. Apparently no one is much motivated to
 change this.

rst2pdf
 relies on ReportLab, and apparently also can adequately
 render Sphinx.

Cameron
Laird's personal notes on generation of
PDF/claird@phaseit.net

